
MATHEMATICS OF COMPUTATION
VOLUME 63, NUMBER 207
JULY 1994, PAGES 351-359

COMPUTING IRREDUCIBLE REPRESENTATIONS
OF SUPERSOLVABLE GROUPS

ULRICH BAUM AND MICHAEL CLAUSEN

ABSTRACT. Recently, it has been shown that the ordinary irreducible represen-
tations of a supersolvable group G of order n given by a power-commutator
presentation can be constructed in time O(n2 log n) . We present an improved
algorithm with running time O(n log n) .

1. INTRODUCTION

In general, computing the ordinary irreducible representations of a given
finite group seems to be a hard problem. In their 1990 breakthrough paper
[1], Babai and R6nyai have shown that this problem can be solved in time
polynomial in the order of the group. Yet their (general-purpose) algorithm
does not appear feasible in a practical sense.

However, one can do much better for special classes of finite groups. In this
paper, we consider the class of supersolvable groups. Recall that these are finite
groups whose chief factors are cyclic of prime order. Recently, Baum [2] has
shown that the irreducible representations of supersolvable groups G, given by
a power-commutator presentation, can be constructed in time 0(1 GI2 log I GI) .
This algorithm has been implemented and has proved quite efficient in practice.
Its main tool is the concept of symmetry-adapted representations, which will be
briefly discussed in the next section. It has been shown in [2] that the irreducible
representations of a supersolvable group adapted to a chief series are always
monomial. The proof gives rise to an efficient construction along the chief series
of the irreducible representations over any field containing a primitive eth root
of unity, where e is the exponent of the group. During the construction, no
field arithmetic is needed at all. Only symbolic calculations in the group of eth
roots of unity are required. Hence, the symbolic result is valid if interpreted
over any field containing a primitive eth root of unity. The structure of this
algorithm is basically bottom-up. However, it contains a recursive subroutine,
which turned out to be the most expensive part.

In this paper, we present an improved algorithm whose running time has
order I GI log I G . It is based on the same ideas as the old algorithm, but the
procedure has been completely reorganized to be purely bottom-up and nonre-
cursive.

Received by the editor October 13, 1992.
1991 Mathematics Subject Classification. Primary 20C 15, 20C40; Secondary 68Q40.

(1994 American Mathematical Society
0025-5718/94 $1.00 + $.25 per page

351

352 ULRICH BAUM AND MICHAEL CLAUSEN

2. SYMMETRY-ADAPTED REPRESENTATIONS

In this section, we recall the concept of symmetry-adapted representations,
which will be an important tool in our construction. Let G be a finite group of
exponent e, and K a field containing a primitive eth root of unity. (According
to a theorem by R. Brauer, K is a splitting field for every subgroup of G.) Let
Sf = (G = G, > ...> Go = {1}) be a chain of subgroups of G. A matrix
representation D of G over K is called 5-adapted if for all j, 0 < j < n,
the following two conditions hold:

* the restriction D l Gj of D to Gj is equal to a direct sum of irreducible
matrix representations of Gj;

* equivalent irreducible constituents of D l Gj are equal.
Symmetry-adapted representations have been applied to various mathematical
and physical problems, see, e.g., [4]. In particular, the most efficient algorithms
for computing discrete Fourier transforms on finite groups are based on this
concept [2, 3].

It is easy to see that every representation of G is equivalent to a Sf-adapted
representation. In our construction, S will be a chief series of the supersolv-
able group G; i.e., every Gi is normal in G and all indices [Gi: Gi1] =:pi
are prime. In this case, Sf-adapted representations are almost unique.

Theorem 2.1. Let 9' be a chief series of the supersolvable group G, and suppose
that D and A are two equivalent irreducible and Sf-adapted K-representations
of G of degree d. Then the intertwining space

Int(D, A) = {X E Kdxd xXD(g) = A(g)X for all g E G}

contains a monomial matrix.

A proof can be found in [2]. This result will be the basis of our construction
described in the next section. In fact, we will see that the irreducible repre-
sentations of a supersolvable group adapted to a chief series are themselves
monomial; i.e., the representing matrices of all group elements are monomial.

3. THE ALGORITHM

Let S9' = (G = Gn > Gn-I > > Go = {1}) be a chief series of the
supersolvable group G, and fix generators g1, . .. , gn of G with gi E G \Gi. i
For 1 < i < n, define = (Gi > Gi > ...> Go). Let K be a field
containing a primitive eth root of unity, where e is the exponent of G. We
will see that our construction only involves (symbolic) calculations in the group
of eth roots of unity; no general K-arithmetic is needed. To this end, we call
a monomial matrix e-monomial if all of its nonzero entries are eth roots of
unity. A representation is called e-monomial if the representing matrices of
all group elements are e-monomial. Recall that for a representation F of a
normal subgroup N i G and an element g E G, the conjugate representation
Fg of N is defined by N X n ? Fg(n):= F(g-'ng).

Our algorithm works bottom-up along Sf. At level i, 1 < i < n, it takes
the following input:

(1) Y, a full set of nonequivalent irreducible e-monomial representations
of Gi_1 over K such that EFE.- F is 87-i-adapted;

IRREDUCIBLE REPRESENTATIONS OF SUPERSOLVABLE GROUPS 353

(2) For every i - 1 < j < n, a permutation T}j of T such that Fgi 7rjF
for all F E 9 as well as e-monomial matrices XjF E Int(Fgj, rjF),
F e7

and computes the following output:
(1) 2, a full set of nonequivalent irreducible e-monomial representations

of Gi over K such that (eDEO D is 9-adapted;
(2) For every i < j < n, a permutation Tj of Q2 such that Dg- TjD

for all D E 2 as well as e-monomial matrices YjD E Int(Dgi, TjD),
D e .

Note that the input of level 1 is trivial. Level i of the algorithm consists of
two phases.

Phase 1. Computation of 2 . Consider F E T and its gi-conjugate represen-
tation Fgi

Case 1. 7riF = F, i.e., F Fg,. Then by Clifford Theory, there are
exactly p := pi pairwise nonequivalent irreducible extensions Do, ..., Dpl
of F to Gi over K satisfying Dk = xk ?Do, where 1 = Zo, , .. p-l
are the characters of the cyclic group Gi/Gi-I . If D is such an extension, and
X := D(gi), we necessarily have

(i) X-IF(h)X = D(gllhgi) = F(gi-lhgi) = Fgz(h) for all h E Gi_, i.e.,
X E Int(Fgz, F) and

(ii) XP=F(g').
Conversely, it is easy to see that these two conditions are also sufficient in order
to define an extension of F to Gi by D(gi) := X.

By (i), X = c * XiF for some c E K* . Now we use (ii) to determine c and
obtain the equation

cPXfPF = F(gf).
This equation has p distinct solutions co, ... , cp-l in K*, which are (pe)th
roots of unity. Thus Do, ..., Dp-l are given by

Dk (gi) := CkXiF X

As XiF is monomial, each Dk is also monomial and obviously 9-adapted.
Looking at the character of Dk, it is easy to see that the constants Ck are even
eth roots of unity, so Dk is e-monomial. Hence, this part of the construction
(in particular the computation of Ck) only involves calculations in the group of
eth roots of unity.

Case 2. 7riF 0 F, i.e., F * Fgi. Again by Clifford Theory, the induced
representation F t Gi is irreducible and (F t Gi) 1 Gi-I = eDP-' Fgik. As F
is e-monomial, so is F t Gi. Now we have to adapt this induced represen-
tation to 57. To this end, note that F9z 7riF and Xi :=

Xi7k 1F ... XiF E

Int(Fgi, 7rzF). Now set X := EkXk and define the representation D by
D(a) := X(F t Gi)(a)X-l for all a E Gi. Obviously, D is irreducible and
e-monomial. As each 7rzF E Y is 5_7-adapted and

p-l
(D 1 Gi-1)(b) = X(F t Gi 1 Gi-1)(b)X-1 = (3(7rzF)(b)

k=O

for all b E Gi1I, D is T7-adapted.

354 ULRICH BAUM AND MICHAEL CLAUSEN

By these two constructions, we obtain all irreducible representations of G1
up to isomorphism, and Phase 1 is complete.

During the construction in Phase 1, we also build a bipartite graph in which
F E

-
and D E Q2 are linked if and only if F is a constituent of D 1 Gi_ .

This "traceback" information will be be needed in the next phase.

Phase 2: Computation of Tj and YjD. Let F E Sr and i < j < n. We have
to consider the same two cases as in Phase 1.

Case 1. 7riF = F. In Phase 1, we have computed the p extensions D =
Do ,..., Dp_ of F, where Dk = Xk k0 D. As D is an extension of F, we
have that TjD must be an extension of rjF . Let A = A0, ... , Ap- be the
extensions of 7rjF computed in Phase 1 with Ak = Xk 0 A. By Schur's lemma,
XjF E Int(Dkg', TjDk) for all k; hence we can set YjDk := XjF, although we
do not know TjDk yet. To determine the TjDk, observe that, for k = 0, the
matrix YjD satisfies

YjDDg (gi) Y-D= (TjD)(gi) = Al(gi) = X'(giGi-1) * A(gi)

for a unique 0 < 1 < p. To compute 1, we only have to look at one nonzero
entry on the left side of this e-monomial matrix equation and the corresponding
entry on the right. With this 1, set TjD := A1. Once 1 is known, the remaining
values TjDk can be computed by "cyclic shifts" as follows: Let 0 < aj < p be
the unique integer such that xg = Xai . (Note that aj can be directly read off
the pc-presentation, see ?4.) Then for 0 < k < p, we have

Dg' = (Xk (& D)gJ - (Xg')k 0 Dg kj 0 k A1.

Hence,
TjDk = Al+kaj modpd

Case 2. 7riF 0 F. In Phase 1, we have computed a D E 2 such that
D 1 Gi-I = e0<k<p Fk with Fk := 7r(F of degree f . Then TjD is the unique
A E 2 such that A 1 Gi-I contains 7rjF. This is already known from Phase
1. According to our construction, TjD 1 Gi-1 = (eO<k<p (Dk with ok 7= iD
for some (E S.

From Phase 1, we know the unique permutation a such that 7rjFk =oak
as well as e-monomial matrices Xk := XjFk E Int(F,gi, (Dk)e

We are looking for an e-monomial matrix YjD E Int(Dgj, TjD). By Schur's
lemma, YjD has the form'

O<k<p

for suitable constants Ck E K*. To determine the Ck, note that YjD must
satisfy the equation

(3.1) YjDDJ (gi)YJD = (TVjD)(gi).

IFor notational convenience, we are going to identify a permutation a e Sym({O, .., p - 1})
with the pf-square block permutation matrix Pa (0 Ef, where Pa is the p-square permutation
matrix corresponding to a and Ef denotes the f-square identity matrix.

IRREDUCIBLE REPRESENTATIONS OF SUPERSOLVABLE GROUPS 355

As YjD is again uniquely determined up to a constant c E K*, we can set
Co:= 1.

According to our construction in Phase 1, there are e-monomial matrices
Ak, Bk E Kfxf such that (TjD)(gi) is a block matrix of the form

(Tj D) (gi) = (O,, p -1) * (Bo fflff Bp_),

and Dg (gi) is a block matrix of the form

Dgj(gi) = iz * (Ao ff ...f Ap-1)

for some 7r E Sym({O, ..., p - 1}). Hence, (3.1) is equivalent to

7r (cnkXnk) (EAk)a c0x' = (, .o . , p - 1). (f Bek)
k=0 k=0 k=0 k=0

Because c0 = 1, we can now successively determine c,l,O C,20 . Note that
we obtain all Ck in this way since 7z = i-'(0, ... , p - 1)o is a p-cycle. To do
this, it is sufficient to look at just one nonzero entry of X,,kAk AcjX,1 and the
corresponding entry in Bak .

4. ANALYSIS

In order to analyze our algorithm, we have to describe its input and output
more precisely.

The group G is given as a power-commutator presentation (also called an
AG-system, see [5]). This is a presentation of the form2

(gn ggn- glggipi =Ui, 1 < i< n; gi-g;7gigj=vij, 1 < i?< n)

with primes Pi, and words ui = gai-, .I. , gai and vij bi, . . ,bij

Moreover, we require that the presentation be consistent, i.e., that every word
in the generators has a unique normal form gnen ge' with 0 < ek < Pk . A
consistent pc-presentation of this kind describes a supersolvable group. More-
over, (Gn > Gn-I > ... > GI > {1}), where Gi := (gi, ... , g9) is a chief series
of G = Gn . Conversely, every supersolvable group can be described by such a
presentation.

The presentation of supersolvable groups by pc-presentations is of special
interest for our purposes. A pc-presentation already contains all the information
on the group needed in our algorithm, so no group operations are required at
all.

With respect to this presentation, a monomial irreducible representation
of the group Gi will be given by the representing matrices of the generators
gi, ... , gl

As we have seen in the previous section, all nonzero entries of the monomial
matrices that occur in our algorithm are eth roots of unity, where e is the
exponent of G. Hence, we do not need general field arithmetic. Only symbolic
computations in the group of eth roots of unity are required. Representing this
group as Z/eZ, this just means integer arithmetic modulo e. For simplicity
of our analysis, we assume that e is known. However, this is not necessary in

20riginally, pc-presentations have been defined to present solvable groups. We use a slightly
modified form suited to the class of supersolvable groups.

356 ULRICH BAUM AND MICHAEL CLAUSEN

practice: Just start with e = 1 and increase e by a factor of p whenever a pth
root cannot be computed in Case 1 of our construction.

Obviously, most of the work in our algorithm consists of multiplying, invert-
ing, and copying e-monomial matrices. Choosing a suitable data structure for
e-monomial matrices is therefore vital for our algorithm's efficiency. We repre-
sent an n-square monomial matrix M in the form M = 7r diag(al, ... , a,) by
its permutation structure 7r E S, and its nonzero entries al, ... , a,. The per-
mutation ir is stored as a list 7r(1), ... , 7r(n) of integers. Under the realistic
assumption that n and e fit into one standard one-word (e.g., 32-bit) integer
on most machines, this representation uses 2n words of storage.

In order to make our analysis feasible, we are only going to count the follow-
ing operations: arithmetic operations in Z/eZ, multiplication and inversion of
permutations, and copying of e-monomial matrices. Other type of operations
implied by our algorithm such as evaluating permutations, table lookups, and
index calculations will not be counted, but it is clear that they will not affect the
order of the algorithm's running time in a reasonable implementation.

To avoid separate counting of the different kinds of operations, we express
them in terms of "basic operations" as follows, roughly reflecting the relation of
the actual times taken by the different kinds of opertions on a typical computer:

* each arithmetic operation in Z/eZ is counted as 1 basic operation;
* multiplication of two permutations in S, or inversion of one permuta-

tion is counted as n basic operations;
* copying an n-square e-monomial matrix is counted as n basic opera-

tions.
Of course, these definitions are somewhat arbitrary, but they certainly match the
actual running times within a constant factor. Hence again, we can be confident
that our analysis determines the order of our algorithm's running time correctly.

In this model, the product of two n-square e-monomial matrices can be
computed using 2n basic operations according to the following formula:

iz diag(al, ... , a,) * T diag(bi, ... , bn) = rzT diag(a,(l)bl, ... *, aT(n)bn)

In a similar way, an n-square e-monomial matrix can be inverted in 2n basic
operations.

Let us now analyze level i of our algorithm. In the sequel, p := pi and f
denotes the degree of the representation F.

Phase 1: Computation of ?2.
Case 1. 7riF =F.
XiPF can be computed with at most 2 logp * 2f = 4f logp operations using

square-and-multiply.
F(gfi): From the pc-presentation, we know that gPi is a word of the form

g .ei- * gf'. U.sing square-and-multiply to compute matrix powers, we can
hence compute F(g?i) = F(gi_)ei-1 ... F(gi)el with at most

2f (i-2+2ElOgPk =4flog G1i_j+2f(i-2)
k<i

operations.
To obtain a solution c0 of cPXiPF = F(gf), it suffices to divide a single

nonzero entry of F(gP) by the corresponding entry of XV and compute a pth

IRREDUCIBLE REPRESENTATIONS OF SUPERSOLVABLE GROUPS 357

root of the quotient. As computing a pth root just means an integer division
in our symbolic representation, this can be done with only 2 operations.

In order to obtain the p extensions Do, ... , Dp-I of F to Gi, we only
have to compute the p matrices Dk (g) = COwkCoXiF where co is a primitive
pth root of unity. This takes 2pf operations.

Since Dk 1 Gi-I = F, the remaining representing matrices can be copied
from level i - 1, using pf(i - 1) operations.

Altogether, Case 1 takes at most

4f logIGil+ pf(i+ 1)+ f(2i-4)+2

operations.
Case 2. 7riF FF.
As D 1 Gi-I = 7O<k<pkF, the matrices D(gi-1), ..., D(gl) are direct

sums of matrices already computed in level i - 1 and can be obtained by
copying using pf (i - 1) operations.

The matrix X = Ek Xk, where Xk = XikF
.. XiF, can be computed in

at most 2(p - 2)f + f = 2pf - 3f operations.
It remains to compute D(gi) = X(F t Gi)(gi)X'. This matrix has the form

D (gi) =ED@Xk) (O, p - 1) * (Ef D (D Ef (D F(gf)) (@Xk t
k=0 k=0

= (0, ... , p- 1) (XIX6 p1e .* Xp_X;12eXoF(g'P)Xp1y)

As in Case 1, computing F(gf) takes at most 4flogIGi-II + 2f(i - 2) op-
erations.

The inverses of X1, ..., Xp-l can be computed with at most 2(p - I)f
operations. (Note that XO is the identity matrix.)

Finally, we have to compute p products of f-square e-monomial matri-
ces to obtain D(gi) according to the above formula. This takes at most 2pf
operations.

Altogether, Case 2 takes at most 4f log IGi- II+pf(i+5)+f(2i-9) operations
for the p f-dimensional representations 7irF of Gi1, that is,

-f log IGi- I + f(i + 5) + (2i - 9)

operations each.

Phase 2: Computation of Tj and YjD. Let F E Y and i < j < n.
Case 1. 7riF = F. For each i < j < n, we have to do the following:
The matrices YjDk = XJF (O < k < p) are copies from level i - 1 in pf

operations.
To compute 1, we have to compute one nonzero entry of YjDDgj (gi) Y1

and divide it by the corresponding entry of A(gi) .
First, we compute Dgj(gi) = D(gj1 gigj): From the pc-presentation, we

know that gy- gigi is a word of the form g1ei ... ge . Hence, Dgj (gi) can be
computed in at most 4f log I Gi + 2f(i - 1) operations (see Case 1 of Phase 1).

358 ULRICH BAUM AND MICHAEL CLAUSEN

Next, we compute one nonzero entry of YjDDgj(gi)Y-DI with 3 more opera-
tions.

To obtain 1, we divide this entry by the corresponding entry of A(gi) and
compute the pth root of the quotient, which is a pth root of unity. As this
just means an integer division in our symbolic representation, it takes 2 more
operations to compute 1.

Now the zjDk can be obtained by "cyclic shifts", which are free of cost in
our model.

Altogether, Case 1 takes at most

4f log Gil + pf + f(2i - 2) + 5

operations.
Case 2. 7riF # F. For each i < j < n, we have to do the following:
-rjD can be determined free of cost by table lookups.
Next we determine the coefficients Ck, 0 < k < p. For each coefficient,

we have to compute one nonzero entry of XnkAkcjj'X,71 and divide it by the
corresponding entry of Bak. Altogether, this takes 5p - 5 operations.

Finally, in order to obtain Y1D, we have to compute c2X2, ..., cp_lXp_l
This takes at most 2(p - 1)f operations.

Altogether, Case 2 takes at most 2pf - 2f + 5p - 5 operations for p f-
dimensional representations of Gi1 , that is,

2f-2f +5-f5
p p

operations each.
Altogether, we have proved the following.

Lemma 4.1. The number of operations taken to process one f-dimensional rep-
resentation of Gi-1 in both phases is at most

8f log Gil+ pf(i+ 2)+ f(4i -6) + 7

for Case 1, and at most

4
f log IGi-I I + f (i + 7) +-f (2i - 1 1) + 5 - 5

for Case 2.

As the first case is obviously more expensive than the second, our worst-case
analysis will be based on Case 1. If we sum up over all representations F E Y
and use the fact that EFEO deg F < I Gi1 , we obtain the upper bound

81Gi- 1I log IGiI + IGiI(i + 2) + IGi_I 1(4i + 1)
< 4jGil log IGil + IGil(i + 2) + JGiJ(2i + 1/2)
? 41Gil log IGil + 3IGili + 2.51Gi1
? 71Gil log IGil + 2.51Gil

for the number of operations in level i of the algorithm.

IRREDUCIBLE REPRESENTATIONS OF SUPERSOLVABLE GROUPS 359

Summing up over all levels 1 < i < n, we obtain the upper bound
n n

7 Z IGil log IGil + 2.5 Z IGil
i=l i=l

n n

< 7log IGnI Z IGil + 2.5 E IGil

i=l i=l
n n

<7logIGnly nli-n+25 Gli-n

n-I n-I

< 7IGnI log IGnI E 2-' + 2.51Gn IE 2-i
i=O i=O

< 14IGnI log IGn, + 5IGnI
for the total number of operations of our algorithm, and we have proved the
following.

Theorem 4.1. The ordinary irreducible representations of a supersolvable group
G can be computed from a power-commutator presentation of G with at most

141GI log IGI + 51GI = O(GI log IGI)
basic operations.

Observe that Lhe output of our algorithm consists of 2n EDeo deg D integer
numbers, where 0 denotes the set of irreducible representations of G com-
puted in level n . Obviously, this is at most 21 GI log I G . On the other hand,
this upper bound is sharp for abelian 2-groups. Although it does not prove a
lower complexity bound, this indicates that our algorithm is (in terms of the
group order) optimal up to a constant factor.

We have not yet implemented our algorithm. However, it can be expected to
run substantially faster than the old algorithm, for which some running times
are given in [2].

BIBLIOGRAPHY

1. L. Babai and L. R6nyai, Computing irreducible representations of finite groups, Proc. 30th
IEEE Sympos. Foundations of Comput. Science, IEEE Computer Society Press, Los Alami-
tos, CA, 1989, pp. 93-98.

2. U. Baum, Existence and efficient construction of fast Fourier transforms on supersolvable
groups, Comput. Complexity 1/3 (1992), 235-256.

3. M. Clausen, Fast generalized Fourier transforms, Theoret. Comput. Sci. 67 (1989), 55-63.
4. A. Fassler and E. Stiefel, Group theoretical methods and their applications, Birkhauser,

Boston, 1992.
5. C. R. Leedham-Green, A soluble group algorithm, Computational Group Theory (M. D.

Atkinson, ed.), Academic Press, London, 1984, pp. 85-101.

INSTITUT FUR INFORMATIK, UNIVERSITXT BONN, R6MERSTR. 164, 53117 BONN, GERMANY

E-mail address: uliOleon. cs . uni-bonn. de
E-mail address: clausen0leon. cs .uni-bonn. de

